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LETTER TO THE EDITOR 

Fluid formulation of a generalised Schrodinger-Langevin 
equation 

AntGnio B Nassar 
Department of Physics, University of California, Los Angeles, CA 90024, USA 

Received 18 April 1985 

Abstract. We recast a generalised Schrodinger-Langevin equation into a set of hydro- 
dynamical equations and draw some analogies with a classical (plasma) fluid theory 
describing the motion of charged particles in a neutralised background. 

In recent years there has been renewed interest in the analogy between the quantum 
mechanics of a point particle and the dynamics of a fluid (Guerra 1981, Ghosh and 
Deb 1982, 1984, Putterman and Roberts 1983, Nonnemacher et a1 1983, Takabayasi 
1983, Bohm and Hiley 1984, Nassar 1984). Madelung was the first to transform the 
Schrodinger equation for a particle into two fluid-dynamical equations: a continuity 
equation and an Euler-type equation. This description involves the density p (= $*+) 
and the velocity field U as primary quantities. Thus, the fluid dynamicist can gather 
experience of its effects by translating some of the elementary situations of the quantum 
theory into their corresponding fluid mechanical statements and vice versa. 

In fact, some years ago Nelson (1966) showed that a natural and straightforward 
particle interpretation of the Madelung fluid is indeed possible by allowing a random 
character to the underlying trajectories: a stochastic interpretation of quantum 
mechanics in terms of subquantum random fluctuations resulting from the action of 
a stochastic invariant thermostat (see Guerra 1981, for a detailed review of this theory). 
By proceeding in the same line of reasoning, we have recently derived a generalised 
Schrodinger-Langevin equation (GNLSLE) for the description of an interacting, non- 
conservative system. Thus, by taking the ensemble average of this equation we 
recovered the celebrated Langevin equation (Nassar 1985). 

The aim of this letter is to Madelung-transform the GNLSLE and show its striking 
similarities with the classical (plasma) fluid theory describing the motion of charged 
particles (electrons) is a neutralised (ion) background subject to an external electric 
field, namely 

(1) ap(x, t)/at+v - ( p ( x ,  t ) u ( x ,  t ) )  = o  
and 

where m, -e,  p, U, ( k T /  m)”’, v are the particle (electron) mass, charge, density, mean 
velocity, thermal speed and collision frequency, respectively (Krall and Trivelpiece 
1973, Tanenbaum 1967, Mengoli et a1 1983). 
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Therefore, let us recall the GNLSLE (Nassar 1985, Enz 1979) 

where +(x, t )  is the wavefunction, E ( x ,  t )  is the external electric field, ( h v / 2 i )  In($/+*) 
is the Kostin quantum ‘potential’ (Kostin 1972, Yasue 1978) and b1nl+I2 is the 
Bialynicki-Birula-Mycielski quantum ‘potential’ (Bialynicki-Birula and Mycielski 
1976). 

To obtain the fluid dynamical description of the wavefunction $(x, t ) ,  we express 
this function in the Madelung form 

+(x, t )  = 44x, t )  exp(iS(x, t ) ) .  ( 4 )  

After substitution of ( 4 )  into (3) ,  we obtain, from its imaginary and real parts, 
respectively 

a p ( ~ ,  t ) / a t + v  ( p ( x ,  ~)u(x ,  t ) ) = o  ( 5 )  

and 

where p ( x ,  t )  = Id(x, t)12 is the quantum fluid-particle density, u(x, t )  = ( h / m ) V S ( x ,  t )  
is the fluid-particle velocity, and V,, = - ( h ’ / 2 m ) ( p ( x ,  t ) ) -1 ’2V2(p (x ,  t ) ) ” 2  is the Bohm 
quantum potential. 

Despite the striking mathematical similarities between (6) and (2), physically they 
need to be considered carefully. The quantum fluid (6), under an ensemble average, 
corresponds exactly to the classical Langevin equation 

x +  v x =  -eE(x ,  t ) / m  (7) 

whereas the classical fluid ( 2 )  is similar to (7) except for the nonlinear term U -  Vu 
(which is called the inertial term in hydrodynamics) and the pressure term p = (kT/ m ) p .  
It only attains the form of (7) if, for instance, U and its derivatives are small and we 
consider the cold-plasma approximation. Nevertheless, we still can gather some 
important consequent analogies between (6) and (2), which simplify our physical 
interpretation of the GNLSLE and render strong support for exploration of manifold 
solutions, based on the well developed mathematical problem solving methods of 
nonlinear differential equations in the literature. 

Previously, the term /L = V J m  = - ( h 2 / 2 m 2 ) ( p ) - ” 2 V 2 ( p ) ’ / Z  had been loosely 
referred to as a quantum pressure term. Later it was realised (Grant 1973, Roberts 
1976, Wong 1976) that this is a misnomer because (a) the dimensionality is incorrect 
and it would be better regarded as a quantum (chemical) potential per unit mass (b) 
the word pressure suggests a phenomenon that depends only on the local thermody- 
namic state (here fixed p )  and (c) the presence of derivatives in 

uij = ( h 2 p / 4 m 2 ) v i v j  In p (9) 
shows that neighbouring points are involved in its definition. Thus, uii is a properly 
dimensioned contender for the (anisotropic) quantum stress tensor, instead. 



Letter to the Editor L511 

The right contender in ( 6 )  for the quantum (barotropic) pressure is the term 

where b plays a somewhat similar role to kT in (2).  The key difference between the 
quantum pressure and the classical pressure is that (10) (as well as (9)) is an intrinsic, 
self-information content intimately attached to the stochastic invariant thermostat. If 
b > 0 ( b  < 0) we have repulsive (attractive) type of interactions, in accordance with 
Bialynicki-Birula and Mycielski’s findings: for a logarithmic Schrodinger-like equation 
with nonlinearity b lnl+b12 they obtained (in the case of attractive interactions b < 0) 
soliton-like solutions of Gaussian form. 

Finally, unlike the two other nonlinear quantum potentials, the Kostin quantum 
potential, viewed through ( 6 ) ,  has a precise classical counterpart: the dissipative term 
vu in (2) or (7). It is a quantum transcription of a phenomenologically classical 
dissipative and irreversible process. 

In passing, Caldeira and Leggett (1985) have very recently given a possible justifica- 
tion for the use of nonlinear wavefunctions for the description of non-conservative 
systems, based on their conclusion that damping tends to destroy interference effects 
of two Gaussian wavepackets in a harmonic potential. Therefore, we believe that the 
protocol presented above can be used as a clue to a deeper understanding of nonlinear 
wave mechanics as well as to encourage usage of the well developed mathematical 
problem solving methods of nonlinear differential equations to gather new insights 
and design some physical applicabilities to investigate the range of validity of our 
GNLSLE.  We intend to do this in the future in a longer work. 
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